Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 14(5)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38470728

RESUMO

The wide array of structures and characteristics found in ZnO-based nanostructures offers them a versatile range of uses. Over the past decade, significant attention has been drawn to the possible applications of these materials in the biomedical field, owing to their distinctive electronic, optical, catalytic, and antimicrobial attributes, alongside their exceptional biocompatibility and surface chemistry. With environmental degradation and an aging population contributing to escalating healthcare needs and costs, particularly in developing nations, there's a growing demand for more effective and affordable biomedical devices with innovative functionalities. This review delves into particular essential facets of different synthetic approaches (chemical and green) that contribute to the production of effective multifunctional nano-ZnO particles for biomedical applications. Outlining the conjugation of ZnO nanoparticles highlights the enhancement of biomedical capacity while lowering toxicity. Additionally, recent progress in the study of ZnO-based nano-biomaterials tailored for biomedical purposes is explored, including biosensing, bioimaging, tissue regeneration, drug delivery, as well as vaccines and immunotherapy. The final section focuses on nano-ZnO particles' toxicity mechanism with special emphasis to their neurotoxic potential, as well as the primary toxicity pathways, providing an overall review of the up-to-date development and future perspectives of nano-ZnO particles in the biomedicine field.

2.
Int J Mol Sci ; 25(5)2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38473720

RESUMO

The currently available anti-cancer therapies, such as gamma-radiation and chemotherapeutic agents, induce cell death and cellular senescence not only in cancer cells but also in the adjacent normal tissue. New anti-tumor approaches focus on limiting the side effects on normal cells. In this frame, the potential anti-tumor properties of Pulsed Electromagnetic Fields (PEMFs) through the irradiation of breast cancer epithelial cells (MCF-7 and MDA-MB-231) and normal fibroblasts (FF95) were investigated. PEMFs had a frequency of 8 Hz, full-square wave type and magnetic flux density of 0.011 T and were applied twice daily for 5 days. The data collected showcase that PEMF application decreases the proliferation rate and viability of breast cancer cells while having the opposite effect on normal fibroblasts. Moreover, PEMF irradiation induces cell death and cellular senescence only in breast cancer cells without any effect in the non-cancerous cells. These findings suggest PEMF irradiation as a novel, non-invasive anti-cancer strategy that, when combined with senolytic drugs, may eliminate both cancer and the remaining senescent cells, while simultaneously avoiding the side effects of the current treatments.


Assuntos
Neoplasias da Mama , Campos Eletromagnéticos , Humanos , Feminino , Morte Celular , Senescência Celular , Fibroblastos
3.
Bioessays ; 45(9): e2300112, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37431695

RESUMO

With DNA damage being a primary anti-cancertarget, a need has arisen for the development of an approach that is a harmlessfor normal tissues but allows for cancer cell-specific cytotoxicity. Previous researchfrom K. Gurova's suggests that small compounds, namely curaxins that bind theDNA can cause chromatin instability and cell death in a cancer cell-specificmanner. In this brief perspective commentary, we investigate how the scientificcommunity has further developed this anti-cancer approach.


Assuntos
Cromatina , Neoplasias , Dano ao DNA , Morte Celular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...